NanoSynthons

Defining Elemental Nanoscience

Publications

Dendrons and Dendrimers

STARBURST® Dendrimers:  Molecular Level Control of Size, Shape, Surface Chemistry, Topology and Flexibility from Atoms to Macroscopic Matter,” D.A. Tomalia, A.M. Naylor W.A. Goddard III, Angew. Chem. Int. Ed. Engl., 29(2), 138-75 (1990).

Dendrimers and Other Dendritic Polymers,” edited by D.A. Tomalia and J.M.J. Fréchet, J. Wiley & Sons Ltd., Chichester (2001).

“Birth of a New Macromolecular Architecture:  Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Organic Chemistry, D.A. Tomalia, Aldrichimica Acta, 37(2) 39-57 (2004). PDF

The Dendritic State,” D.A. Tomalia, Materials Today, pp. 34-46, March 2005.

 “Birth of a New Macromolecular Architecture:  Dendrimers as Quantized Building Blocks for Nanoscale Synthetic Polymer Chemistry,” D.A. Tomalia, Prog. Polym. Sci., 30, 294-324 (2005). 

“Poly(amidoamine) Dendrimers,” D.A. Tomalia and L.S. Nixon in Polymer Data Handbook, Second edition, (James E. Mark, editor), Oxford University Press, New York, 356-362 (2009).

"Dendrimers, Dendrons and Dendritic Polymers," D.A. Tomalia, Jorn B. Christensen, and Ulrik Boas. Cambridge University Press, (2012).

Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs)” D.A. Tomalia, New J. Chem., 36, 264-281 (2012).

"Twenty-First Century Polymer Science After Staudinger: The Emergence of Dendrimers/Dendritic Polymers as a Fourth Major Architecture and  Window to a New Nano-periodic System", Donald A. Tomalia in Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize I, 321-389 (2013).

 “Polyamidoamine Dendrimer-Based Binders for High-Loading Lithium-Sulfur Battery Cathodes,” P. Bhattacharya, M.I. Nandasiri, D. Lv, A.M. Schwarz, J.T. Darsell, W.A. Henderson, D.A. Tomalia, J. Liu, J.-G. Zhang, J. Xiao, Nano Energy, 19, 176-186, January (2016).

 “Dendrimer Dipole Excitation:  A New Mechanism for Terahertz Generation,” A. Rahman, A.K. Rahman, D.A. Tomalia, J. Biosens. Bioelectron., 7, 1, 1000196 (2016).

 “Intrinsic Fluorescence of Triazine Dendrimers Provides a New Approach to Study Dendrimer Structure and Conformational Dynamics,” S. Raut, A.E. Encisco, G.M. Pavan, C. Lee, A. Yepremyan, D.A. Tomalia, E.E. Simanek, Z.K. Gryczynski, J. Phys. Chem. C, 121 (12), 6946-6954, (2017).

 “Engineering Dendrimers to Produce Dendrimer Dipole Excitation Based Terahertz Radiation Sources Suitable for Spectrometry, Molecular and Biomedical Imaging,” A. Rahman, A.K. Rahman, D.A. Tomalia, Nanoscale Horizons, 2, 127-134 (2017).

Modified PAMAM Dendrimer with 4-Carbomethoxypyrrolidone Surface Groups-Its Uptake, Efflux, and Location in a Cell,” A. Janaszewska, M. Studzian, J.F. Petersen, M. Ficker, V. Paolucci, J.B. Christensen, D.A. Tomalia, B. Klajnert-Maculewicz, Colloids & Surfaces B:  Biointerfaces, 159, 211-216 (2017).

A Serendipitous Journey Leading to My Love of Dendritic Patterns and Chemistry,” D.A. Tomalia, Molecules, 23, 824 (2018).

Determination of Non-traditional Intrinsic Fluorescence (NTIF) Emission Sites in 1-(4-carbomethoxypyrrolidone)-PAMAM Dendrimers Using CNDP Based Quenching Studies,” M. Konopka, A. Janaszewska, K.A.M. Johnson, D. Hedstrand, D.A. Tomalia, B. Klajnert-Maculewicz, J. Nanoparticle Res., 20, 220/1-11 (2018).

Terahertz Based Nanometrology:  Multispectral Imaging of Nanoparticles and Nanoclusters in Suspensions,” A. Rahman, D.A. Tomalia, J. Nanoparticle Res., 20, 297/1-8 (2018).

Non-traditional Intrinsic Luminescence:  Inexplicable Blue Fluorescence Observed for Dendrimers, Macromolecules and Small Molecular Structures Lacking Traditional/Conventional Luminophores,” D.A. Tomalia, B. Klajnert-Maculewicz, K.A.-M. Johnson, H.F. Brinkman, A. Janaszewska, D.M. Hedstrand, Prog. Polym. Sci., 90, 35-117 (2019).

Non-traditional Intrinsic Luminescence (NTIL):  Dynamic Quenching Demonstrates the Presence of Two Distinct Fluorophore Types Associated with NTIL Behavior in Pyrrolidone-Terminated PAMAM Dendrimers,” M. Studzian, L. Pulaski, D.A. Tomalia, B. Klajnert-Maculewicz, J. Phy. Chem. C, 123, 29, 18007-18016 (2019).

Dendrimer-Based Nanomedicine

Poly(amidoamine) (PAMAM) Dendrimers:  From Biomimicry to Drug Delivery and Biomedical Applications,” R. Esfand, D.A. Tomalia, Drug Discovery Today, 6(8), 427-436 (2001).

Designed Dendrimer Syntheses By Self-Assembly of Single Site, ssDNA Functionalized Dendrons,” C.R. DeMattei, B. Huang, D.A. Tomalia, NanoLetters, 4(5), 771-777 (2004).

“Dendrimers as Multi-Purpose Nanodevices for Oncology Drug Delivery and Diagnostic Imaging,” D.A. Tomalia, L.A. Reyna, S. Svenson, Biochemical Society Transactions, 35(1), 61-67, (2007). PDF

Unexpected In Vivo Anti-Inflammatory Activity Observed for Simple, Surface Functionalized Poly(amidoamine) Dendrimers,”, A.S. Chauhan, P.V. Diwan, N.K. Jain, D.A. Tomalia, Biomacromolecules, 10, 1195-1202 (2009).

Dendrimer-Based Drug and Imaging Conjugates:  Design Considerations for Nanomedical Applications,” R.M. Kannan, A.R. Menjoge, D.A. Tomalia, Drug Discovery Today, 15, 5/6, 171-185 (2010).

"An Architectural Journey: From Trees, Dendrons/Dendrimers to Nanomedicine"  H. Stanwix, D.A. Tomalia, Nanomedicine, 7(7), 953-956 (2012). PDF

“A Novel RNA Oligonucleotide Improves Liver Function and Inhibits Liver Carcinogenesis In Vivo,” V. Reebye, P. Saetrom, P.J. Mintz, K.W. Huang, P. Swiderski, L. Peng, C. Liu, X.X. Liu, S. Jensen, D. Zacharoulis, N. Kostomitsopoulos, N. Kasahara, J.P. Nicholls, L.R. Jiao, M. Pai, M. Mizandari, T. Chikovani, M.M. Emara, A. Haoudi, D.A. Tomalia, J.J. Rossi, N.A. Habib, D.R. Spalding, Hepatology, doi:  10.1002/hep.26669.

 “Emerging Concepts in Dendrimer Based Nanomedicine:  From Design Principles to Clinical Translation,” R.M. Kannan, E. Nance, S. Kannan, D.A. Tomalia, J. Intern. Med., 276, 579-617, (2014).

Modified PAMAM Dendrimer with 4-Carbomethoxypyrrolidone Surface Groups-Its Uptake, Efflux, and Location in a Cell,” A. Janaszewska, M. Studzian, J.F. Petersen, M. Ficker, V. Paolucci, J.B. Christensen, D.A. Tomalia, B. Klajnert-Maculewicz, Colloids & Surfaces B:  Biointerfaces, 159, 211-216 (2017).

Dendrons/Dendrimers:  A Window to a New Nano-Periodic System

“In Quest of a Systematic Framework for Unifying and Defining Synthetic Nanoscience,” D.A. Tomalia, J. of Nanoparticle Research, 11, 1251-1310 (2009). PDF

Dendrons/Dendrimers":  Quantized Nano-element Like Building Blocks for Soft-Soft and Soft-Hard Nano-compound Synthesis,” D.A. Tomalia, Soft Matter, 6, 456-474 (2010).

“Dendrimers as Quantized Nano-modules in the Nanotechnology Field,” J.B. Christensen, D.A. Tomalia, in Chapter 1; Designing Dendrimers (eds., S. Campagna, P. Ceroni, F. Puntoriero), J.Wiley & Sons, Hoboken, NJ, pp. 1-33 (2012).

"Proposed Taxonomy and Classification Strategy for Well-Defined, Soft Matter Nanoscale Building Blocks”, J.B. Christensen and D.A. Tomalia in Organic Nanomaterials: Syntheses, Characterization, and Device Applications (eds. T. Torres, G. Bottari), J.Wiley, (2013).

Regio-specific Size, Shape and Surface Chemistry Designed Dendrimers Based on Differentiated Dendroid Templates,”  S. Tang, D.A. Tomalia, B.G. Orr, J.R. Baker Jr., B. Huang, New J. Chem., 37(3) 690-700 (2013).

  "IN QUEST OF A SYSTEMATIC FRAMEWORK FOR UNIFYING AND DEFINING NANOSCIENCE" DONALD A. TOMALIA and SHIV N. KHANNA, Mod. Phys. Lett. B 28, 1430002 (2014) [48 pages] DOI: 10.1142/S0217984914300026